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Abstract

The literature on nonparametric instrumental variable (IV) methods has been growing, and
while the mathematics behind these methods are highly technical, researchers believe that these
methods will soon emerge as viable alternatives to parametric approaches. The difficulty of
these methods stems from the fact that the nonparametric instrumental variable estimator is
the solution to a ill-posed inverse problem. The ill-posed inverse problem is solved by us-
ing regularization methods. Therefore there are two steps for solving the nonparametric (IV)
problem: estimating conditional means and regularization. When analysis is performed using
complex survey data, one must also consider the sampling design. When endogeneous sampling
is present, traditional estimation methods will be inconsistent. I extend the theory of nonpara-
metric IV models to account for sample design by estimating the conditional mean functions
using a probability weighted local constant estimator.



1 Introduction

Violation of one or more of the assumptions made on the data generating process (DGP) of an

econometric model leads to misspecification and the estimator may converge to a parameter that

differs from the true population value. A common complication within health econometric mod-

els is the presence of endogenous predictor variables, which lead to inconsistent estimates using

either traditional parametric or nonparametric regression methods. Simultaneity leads to complex

relationships between health variables, blurring the direction of causality. A popular example in

economics is the estimation of demand curves. Quantity demanded is a function of price; however,

firms change their price based on quantity demanded. Contoyannis et al. (2005) encountered this

problem when estimating the price elasticity for prescription drugs in Québec. For senior citizens

over the age of 65, the provincial drug plan imposed a deductible of $14.30 per month, covered

31 percent of costs between $14.30 to $77.21, and covered 100 percent of costs above $77.21. As

consumption increased, the price for additional units decreased after a certain amount paid, leading

to a kinked budget constraint.

Mathematically, a model with at least one endogenous regressor is written as:

Y = g(X) + ε; E(ε|X) 6= 0. (1.1)

In this case, the conditional mean E(Y |X) no longer coincides with the object of interest, i.e.

E(Y |X) 6= g(X). If, however, there is a vector Z that is correlated with X and E(ε|Z) = 0, one

can apply instrumental variable (IV) techniques and obtain consistent estimates of g(·).

In a linear parametric model, we specify g(X) = g(X,β) = Xβ, greatly simplifying the analysis.

In this linear specification, the parameter of interest β is either a scalar or a vector. Since the

identifying mapping is continuous, we can apply two-staged least squares and estimate the model’s

parameters by replacing the unknown population distribution with a consistent sample analog

(Horowitz 2013). This is known as a well-posed problem. The issue with using these methods is

that economic theory may not support restricting the data generating process to Y = Xβ + ε.

Furthermore, these methods may mislead analysts by suggesting their results are more precise than
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they actually are (Centorrino, Feve & Florens 2014).

This is the motivation behind a growing body of literature on nonparametric instrumental

variable methods. Nonparametric models do not assume a specific functional form, instead the

parameter of interest is the solution of an equation that is dependent on the DGP (Li & Racine

2007). The parameter in this case is a function (g(X)), not a vector or scalar. The challenge

for most researchers who are considering using nonparametric IV methods is that they involve

mathematical techniques that are not part of the ‘standard toolkit’ taught to econometricians,

hence there are some fixed costs that must be incurred. However, these upfront fixed costs can

reward the patient researcher with substantial dividends. Theoreticians acknowledge the hesitation

of empirical researchers to use these methods but insist that nonparametric IV techniques are

emerging as viable alternatives to parametric approaches (Darolles, Fan, Florens & Renault 2011).

In contrast to parametric IV, the identifying mapping of the model’s parameter (function) in

nonparametric IV estimation is discontinuous and constitutes an ill-posed inverse problem. As will

be shown in Section 4, the nonparametric IV model reduces to a Fredholm equation of the first

kind with an infinite-dimensional operator function. In that way, we can think of solving for a

parameter in a parametric model as a finite-dimensional problem and solving for a parameter in

the nonparametric IV model as an infinite-dimensional problem.

In order to estimate the parameter (function) in an nonparametric IV model, we must first

transform the discontinuous mapping into a continuous one, where the parameter can be uniquely

identified. The process of converting an ill-posed problem into a well-posed problem is called

‘regularization’. This additional step is the difference between nonparametric IV and conventional

nonparametric regression: in addition to estimating conditional mean functions, we must now

also regularize the mapping to solve for g(·). This requires the selection of two parameters, the

smoothing parameter for estimating conditional mean functions and the regularization parameter.

In an applied setting, empirical economic studies often make use of large datasets that rely on

complex sampling plans. When using data collected using unequal probability sampling, inference

must take into account the sampling plan. If sampling is endogenous, such that the sampling cri-

terion is related to the error term, estimation of conditional mean functions will be inconsistent
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(Clair 2019, Magee, Robb & Burbidge 1998). Modified nonparametric kernel regression meth-

ods have been used to study the relationship between X and Y to incorporate survey weights.

Sánchez-Borrego et al. (2014) introduced a local constant estimator with probability weighted

kernel density functions for estimating conditional mean functions using mixed data types. Clair

(2019) further investigated this probability weighted estimator and developed a least squares cross-

validation method for selecting the smoothing parameters. Clair (2019)’s simulations showed that

the probability weighted local constant had a lower mean squared error under endogenous stratifi-

cation.

The purpose of this paper is to review the recent developments and advancements in nonpara-

metric IV, present these methods in a language that is accessible to audiences outside of theoretical

econometricians, and extend this theory to account for sampling design. To account for sample

design, I propose using the probability-weighted local constant estimator from Sánchez-Borrego et

al. (2014) and select the bandwidths using the method from Clair (2019). The rest of this paper is

organized in six sections. Following this introduction, in Section 2, I provide an overview of the un-

derlying theory of nonparametric instrumental variable regression. In Section 3, I review parametric

instrumental variable methods, including two-staged least squares (2SLS) and generalized method

of moments (GMM). Section 4 introduces the nonparametric IV framework and demonstrates how

identification of g(X) is the solution to an ill-posed inverse problem. This section reviews methods

for estimating the conditional mean functions and reviews the probability weighted local constant

estimator. In addition, this section also describes Landweber-Fridman regularization, an iterative

method to correct a discontinuous mapping. In Section 5, I run simulations comparing probabil-

ity weighted nonparametric IV methods to unweighted nonparametric IV methods and traditional

nonparametric regression methods. Section 6 applies the probability-weighted nonparametric in-

strumental variable estimator to estimate the impact of supplemental insurance on the hours spent

with a psychologist. Section 7 concludes.
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2 Underlying Theory

The underlying theory of nonparametric instrumental variable estimation is complex. The theory

contains concepts from differential and integral calculus, functional analysis, and linear integral

equations. Functional analysis is a branch of mathematical analysis concerned with vector spaces

with some limit-related structure and mappings between them. These mappings are called opera-

tors, denoted by T : H → V, which project elements from the domain vector space H to the range

vector space V. The type of linear integral equation of interest in estimating nonparametric IV

models is the Fredholm equation of the first kind:

∫ b

a
f(x, z)g(x)dx = r(z), x ∈ [a, b] (2.1)

where g(x) is the unknown quantity we wish to solve for, f(x, z) is a weight function, and r(z) is

a given function. In this case, both r and f are known. For a full investigation on linear integral

equations, I refer you to Kress (1999).

In this section, I define relevant terms and concepts to understanding the problem of nonpara-

metric IV and provide a narrative to facilitate the reader’s understanding of the material. For a

thorough and more technical review of the underlying concepts and their application to nonpara-

metric instrumental variable estimation, I refer the reader to Carrasco et al. (2007). To start, I

wish to review introductory concepts in functional analysis.

2.1 Functional Spaces

Fields and vector spaces are commonly worked with in applied economics as several concepts from

linear algebra are relevant in econometric theory. Therefore, fields and vector spaces provide a

helpful starting point to understand nonparametric IV methods. In mathematics, a field F refers

to a set in which the addition, subtraction, multiplication, and division of the elements in any

subset of F are also in F (assuming division is not by 0). That is, if α, β ∈ F then α + β, α − β,

α×β, and α/β (β 6= 0) are also in F . The elements of a field are known as scalars and these scalars

satisfy the field axioms.
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Axiom 2.1 (Field Axioms). If α, β, γ ∈ F , then they satisfy the following properties:

(i) Associativity of Addition: (α+ β) + γ = α+ (β + γ)

(ii) Commutativity of Addition: α+ β = β + α

(iii) Distributivity of Addition: α(β + γ) = αβ + αγ

(iv) Additive Identity: α+ 0 = α.

(v) Additive Inverse: There exists a scalar −α such that α+ (−α) = 0.

(vi) Associativity of Multiplication: (αβ)γ = α(βγ)

(vii) Commutativity of Multiplication: αβ = βα

(viii) Distributivity of Multiplication: (α+ β)γ = αγ + βγ

(ix) Multiplicative Identity: α · 1 = α.

(x) Multiplicative Inverse: There exists a scalar α−1 such that αα−1 = 1.

Popular examples of fields include the set of real numbers, R, the set of complex numbers C,

and the set of rational numbers1 Q.

A vector space is a set V whose elements, known as vectors, hold for two operations: vector

addition, denoted by “+”, and scalar multiplication, denoted by “·”. Vector addition refers to the

property that any two elements g, h ∈ V can be added to give a third element in V, i.e. g + h ∈ V,

and scalar multiplication is the property that for any α ∈ F then α · g ∈ V. In econometrics, the

term vector is most closely associated with n × 1 column matrices of values in R, however, the

elements of vector spaces can take multiple forms as long at they can be added together and scaled

(multiplied by scalars), e.g. polynomials and other functions. Vector spaces follow axioms that

allow more abstract vector spaces to behave like more geometric spaces, e.g. R3. These axioms are

listed in Axiom 2.2.

1To reinforce this concept, it may help to see an example of a set that is not a field, e.g. the set of integers Z.
While 2, 3 ∈ Z and 2 + 3 = 5, 2− 3 = −1, 2× 3 = 6 ∈ Z, 3/2 = 1.5 /∈ Z.
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Axiom 2.2 (Vector Space Axioms). If f, g, h ∈ V and α, β ∈ R are scalars, then

(i) Vector addition is associative and commutative

(ii) There exists an additive identity, θ, known as the zero vector such that (s.t.) g + θ = g for

all g ∈ V.

(iii) There exists an additive inverse −g ∈ V s.t. g + (−g) = θ.

(iv) α(βg) = αβ(g) for all α, β ∈ R and all g ∈ V.

(v) (α+ β)g = αg + βg for all α, β ∈ R and all g ∈ V.

(vi) α(g + h) = αg + αh for all α ∈ R and all g, h ∈ V.

(vii) 0 · g = θ, 1 · g = g.

Vectors in the form of column matrices of values in R are the easiest to visualize and are often

thought of as “arrows”. The values in a column matrix can be plotted as Cartesian coordinates and

the length of the vector is given by the distance from the origin to point identified by the vector.

When the elements of a vector space take the form of more complex functions, this visualization is

no longer applies. To get a sense of the size and length of vectors in more abstract vector spaces,

one can compute the norm. The norm, denoted by || · ||, is simply a function that transforms the

vector to a scalar in R giving a positive value to the size of the elements in V, where the functional

form of the norm depends on the type of elements in the vector space. More formally, given α ∈ F

and h, g ∈ V the norm is a function V → R such that

(i) ||αg|| = |α|||g||.

(ii) ||h+ g|| ≤ ||h||+ ||g||.

(iii) ||g|| = 0 if and only if g ≡ θ (Li & Racine 2007, Carrasco, Florens & Renault 2007).

Two relevant examples are the Euclidean norm, as this is the vector space most of us are familiar

with, and the norm for the space of square integrable functions, as this is the canonical example

for nonparametric IV analysis.
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Example 2.1 (Euclidean Norm). The norm of g = (g1, g2) ∈ R2 is given by:

||g|| = (g21 + g22)1/2, (2.2)

which gives the ordinary distance from the origin to the point g.

Example 2.2 (Space of Square Integrable Functions). Another example is the space of square

integrable functions, denoted by L2. If h ∈ L2, then the norm of h, ||h||, is given by:

||h|| =
{∫
|h(x)|2dx

}1/2

. (2.3)

When a vector space V has a defined norm, it is called a normed vector space. R2 and L2 are

normed spaces with norms defined by Equations (2.2) and (2.3). A normed space is called a Banach

space if for every sequence {gn} ∈ V

lim
n,m→∞

||gn − gm|| = 0

(Li & Racine 2007)2. This is an important concept as a Banach space ensures there are enough

limits in the space to allow the techniques of calculus to be used.

If one wishes to impose additional structure to define the length of a vector and/or the angle

between two vectors, e.g. identify perpendicularity between two vectors, one needs to define the

inner product. The inner product in a vector space V, denoted by 〈·, ·〉, is a function that returns

a scalar value from the Cartesian product of two vector spaces, where the Cartesian product is a

pairing of elements from the two sets3. The mapping is given by V × V → R with the property

that, for f, g, h ∈ V and α, β ∈ R,

(i) 〈αg + βh, f〉 = α〈g, f〉+ β〈h, f〉.

(ii) 〈g, h〉 = 〈h, g〉.
2A sequence with this property is a Cauchy sequence. When every Cauchy sequence in a vector space converges

it is called complete. Banach spaces are complete normed vector spaces.
3An example is the space R×R = R2 made of all coordinates in the Cartesian plane.
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(iii) 〈g, g〉 = ||g||2.

If the inner product between two vectors is zero, they are said to be orthogonal. Orthogonality

in R2 means that two vectors (arrows) are perpendicular. Therefore, orthogonality in this space

allows one to apply well-known formulas, e.g. Pythagoras’ Theorem, to understand the geometry

of the space. Extending this concept to more complex vector spaces, orthogonality is a result that

helps to simplify one’s analysis when investigating the properties of a vector space. A Banach

spaces where the inner product produces the the norm is called a Hilbert space.

Example 2.3 (Inner Product of R3). The inner product is defined by the dot product. Given two

vectors g, h ∈ R3, the inner product is defined by:

〈g, h〉 = (g1, g2, g3) · (h1, h2, h3) = g1h1 + g2h2 + g3h3.

The norm of g ∈ R3 is given by:

||g|| = (〈g, g〉)1/2 = (g21 + g22 + g23)1/2.

Example 2.4 (Inner Product of L2). L2[0, 1] is a Hilbert space with inner product for functions

h1, h2 ∈ L2[0, 1] defined by 〈h1, h2〉 =
∫ 1
0 h1(x)h2(x)dx and norm ||h1−h2|| = {〈h1−h2, h1−h2〉}1/2.

Hilbert spaces encompass the concepts described above: they are complete vector spaces with

defined norms induced by the inner product, which hold enough limits to perform calculus. Hilbert

spaces include tangible vector spaces like R2 and more abstract vector spaces that may be finite

dimensional or infinite dimensional. While elements in the finite dimensional R2 space can be

specified using its Cartesian coordinates, elements in abstract Hilbert spaces are identified using

an orthonormal basis.

An orthonormal basis is a sequence {gn}∞n=1 of nonzero vectors in Hilbert space H such that

〈gn, gm〉 = 0 for n 6= m and 〈gn, gn〉 = ||gn|| = 1. That is, all vectors in the sequence {gn}∞n=1

are unit vectors and orthogonal to each other (Li & Racine 2007). The sequence {gn}∞n=1 = 1 is a
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complete orthonormal basis of H if:

g =
∞∑
j=1

〈g, gj〉gj . (2.4)

This result is known as the Fourier series for Hilbert spaces. The equality in (2.4) means that the

right-hand-side of Equation (2.4) converges to g:

lim
n→∞

∣∣∣∣∣∣∣∣g − n∑
j=1

〈g, gj〉gj
∣∣∣∣∣∣∣∣ = 0.

Hilbert spaces are relevant as the nonparametric IV framework results in a mapping between

two Hilbert spaces, where the mapping function is given by a Fredholm equation of the first kind.

As will be shown below, the Fourier series for Hilbert spaces are used in developing the solution

to a Fredholm equation of the first kind. Fredholm equations are often expressed using operator

notation, which I discuss next.

2.2 Linear Operators

Define two Hilbert spaces H and V with a function g ∈ H and a function r ∈ V. To simplify

the notation when working with Fredholm equations, it is helpful to define an operator function

T : H → V such that

T [g(x)](z) =

∫ b

a
f(x, z)g(x)dx,

for g ∈ H. Then, (2.1) becomes:

r(z) =

∫ b

a
f(x, z)g(x)dx

⇒ r = Tg (2.5)

The operator T : H → V is called linear if, for every pair of elements g and h, and scalar α ∈ R,

the operator is distributive across addition and T (αg) = α(Tg). The domain of T is the subset of

H on which T is defined and the range of T is the set R(T ) = {r ∈ V : r = Tg for some g ∈ H}.

If an element in g ∈ H does not map to R(T ), then g is said to belong to the null space of T ,
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N (T ).When R(T ) is finite, T is said to be a finite dimensional operator and one may use linear

algebra techniques to describe it. Furthermore, if T is a finite dimensional linear operator on H

then

Tg =
N∑
i=1

αi〈g, φi〉ψi,

for vectors φ1, φ2, ..., φN ∈ H and ψ1, ψ2, ..., ψN ∈ V. {φi}Ni=1 ∈ H and {ψi}Ni=1 ∈ V are orthonormal

bases and αi ∈ R+. T is said to have a rank of N < ∞. An important linear operator in the

nonparametric IV framework is the conditional expectations operator.

Example 2.5 (Conditional Expectation Operator). The conditional expectation operator T :

L2
X → L2

Z , which maps elements from the space of square integrable functions on X to the space of

square integrable functions on Z is denoted by:

T [g(x)](z) = E(g(x)|z) =

∫
g(x)f(x|z)dx, (2.6)

where g ∈ L2
X and f(x|z) is the conditional probability density function of x given z.

The goal of Equation (2.5) is to solve for the unknown quantity g(·). A solution exists so long

as T : H → V is bijective. That is, there is a mapping from H to every element in V and each

g ∈ H maps to a unique element in V. Another way of putting it is that the null space of a bijective

operator is empty and every Tg ∈ R(T ) is unique. Bijective operators are invertible, which means

that for each r ∈ T (H) there is only one element g ∈ H with T−1r = g. If an operator T holds

these properties, the problem is said to be well-posed (Hardamard 1923).

Definition 2.1 (Well-posed problem). Let T : H → V be an operator from a subset H of a

space X into a subset V of a space Z. The operator equation

T [g(x)](z) = r(z)

is called well-posed if:

1. T is bijective;
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2. The inverse operator T−1 : V → H is continuous.

When a problem is well-posed, the parameter of interest can be estimated consistently by

replacing the unknown population distribution with a consistent sample analog. A continuous

mapping preserves the consistency of the estimated parameter if the difference between the sample

analog and true population distribution is small (Horowitz 2013). In order for an operator T to be

continuous, it must be bounded. In other words, it must be that for all Tg in the range V, the norm

of Tg ∈ R(T ) is bounded above by the scaled norm of g ∈ H, M ||g||H, where M is an arbitrary

positive constant (Carrasco et al. 2007).

If for all {gn} in the domain H, the sequence {Tgn} in the range V is such that limn→∞ ||Tgn−

Tg|| = 0, then T is said to be a compact linear operator (Gorodnik 2016)4. Finite dimensional

operators are compact. In fact, a necessary condition for Equation (2.5) to be well-posed is that H

and V must be finite dimensional (Kress 1999). Before finding a solution, one needs the concept of

the adjoint operator.

2.2.1 Adjoint Operators

For a bounded operator T : H → V, the adjoint operator T ∗ : V → H holds the property that:

〈Tg, r〉V = 〈g, T ∗r〉H. Also, T ∗ is bounded with ||T || = ||T ∗||.

Example 2.6 (Adjoint of the Conditional Expectation Operator). Denote T ∗ : L2
Z → L2

X

as the adjoint operator for the conditional expectations operator in (2.6). Then T ∗ is defined by:

T ∗[h(z)](x) = E(h(z)|x) =

∫
h(z)f(z|x)dz, (2.7)

for some function h ∈ L2
Z .

If T = T ∗, then T is called self-adjoint. Theorem 15.9 in Kress (1999) states that if T is a

4From Alexander Gorodnik’s MATH 36202/M6202 course notes at the University of Bristol, Lecture 5. URL:
https://people.maths.bris.ac.uk/ mazag/fa/lecture5.pdf
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bounded self-adjoint operator, then the norm of T : H → H is given by:

||T || = sup
|g|=1
|〈Tg, g〉H|.

Note that the operator T ∗T is self-adjoint. If T is self-adjoint and ||T || > 0, T is said to be a

positive operator.

The solution for g in an operator equation Tg = r where T : H → V is an operator projecting

elements from Hilbert space H into Hilbert space V is known as Picard’s Theorem (Kress 1999).

The theorem makes use of singular value notation; the following is a brief overview of some of these

concepts.

2.3 Singular Value Decomposition

Singular value decomposition refers to the ability to write the operator mapping of an element from

a vector space as a scaled version of that element. When the mapping of a vector can be written as

the vector multiplied by a scalar, the scalar is known as an eigenvalue. If the elements of the vector

space are functions, the eigenvalues are known as eigenfunctions. More formally, an eigenvalue of

a bounded operator T : H → V is a scalar λ such that Tφ = λφ, where φ is a non-zero vector in

H. The eigenvalues of a bounded self-adjoint positive operator T are nonnegative and bounded by

the norm of T , where max(λ) = ||T ||. In contrast, the eigenvalues of an infinitely large self-adjoint

operator shrink to zero.

Denoting {λ2j}nj=1 as the eigenvalues for the nonnegative self-adjoint compact operator T ∗T :

H → H, the singular values are defined as λj =
√
λ2j . Important results on the singular value

decomposition of linear operators have been summarized in the following theorem from Darolles et

al. (2011).

Theorem 2.1 (From Darolles et al. (2011)). Let {λj}nj=1 denote the sequence of the nonzero

singular values of the compact linear operator T repeated according to their multiplicity. Then there

exist orthonormal sequences {φj}nj=1 of H and {ψj}nj=1 of V such that:

(i) Tφj = λjψj, j ≥ 0.
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(ii) T ∗ψj = λjφj, j ≥ 0.

(iii) φ0 = 1 and ψ0 = 1.

(iv) 〈φi, ψj〉 = λiδij, i, j ≥ 0. δij = 1 if i = j and zero otherwise is known as the Kronecker

symbol.

(v) For all g ∈ H, g(x) =
∑∞

j=0〈g, φj〉φj(x) + ḡ(x), where ḡ(x) ∈ N (T ).

(vi) For all h ∈ V, h(x) =
∑∞

j=0〈h, ψj〉ψj(x) + h̄(x), where h̄(x) ∈ N (T ∗).

Then

T [g(X)](z) =
∞∑
j=1

λj〈g, φj〉ψj(z) (2.8)

and

T ∗[h(Z)](x) =

∞∑
j=1

λj〈h, ψj〉φj(x). (2.9)

{λj , φj , ψj} is called the singular system of T . Note that λ2j are the eigenvalues of TT ∗ and T ∗T

associated with the eigenfunctions ψj and φj, respectively.

Using Theorem 2.1, Equation (2.5) can be re-written as:

∞∑
j=1

λj〈g, φj〉ψj =
∞∑
j=1

〈r, ψj〉ψj (2.10)

(Centorrino et al. 2014). The solution to the Fredholm equation of the first kind Tg = r is then

given by Picard’s Theorem:

g =
∞∑
j=1

1

λj
|〈r, ψj〉|φj (2.11)

(Kress 1999). If T is infinite dimensional, then limj→∞ λj = 0. It should now become clear that in

order for (2.5) to be a well-posed problem, H and V must be finite dimensional. Horowitz (2011)

provides the following rationale: Define two functions r1, r2 ∈ L2 as

r1 =
∞∑
j=1

〈r1, ψj〉ψj
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and

r2 =
∞∑
j=1

〈r2, ψj〉ψj .

Next, define g1 and g2 as the approximate solutions for g given r1 and r2, respectively:

g1 =

∞∑
j=1

1

λj
〈r1, φj〉ψj

and

g2 =

∞∑
j=1

1

λj
〈r2, φj〉ψj .

If T is an infinite dimensional operator, the limit for the singular values for T ∗T is zero, i.e.

λj → 0 as j →∞. For any arbitrarily small ε such that

||r1 − r2|| =

 ∞∑
j=1

(〈r1, ψj〉 − 〈r2, ψj〉)2
1/2

< ε

the difference

||g1 − g2|| =

 ∞∑
j=1

(
〈r1, φj〉 − 〈r2, φj〉

λj

)2
1/2

can be made arbitrarily large. Therefore, small perturbations in the data can create vastly different

estimates for g (Horowtiz 2011).

If T is finite dimensional, such that r1 =
∑J

j=1〈r1, ψj〉ψj and r2 =
∑J

j=1〈r1, ψj〉ψj for some

finite J, λj > 0 for all j = 1, ..., J and small changes in data cause only small changes in the

estimated parameter. As mentioned above, finite-dimensional operators are compact and therefore

continuous. The difference between the estimated and the true parameter values is small if the

difference between the sample analog and true population distribution is small.

If at least one of the conditions in Definition 2.1 is not met, the problem is called ill-posed, and

if the ill-posed nature of the problem is caused by inverting a continuous mapping, the problem is

considered an ill-posed inverse problem. In this case, it is no longer true that the difference between

the estimated and true parameter values is small because we replace the population distribution
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with a consistent sample analog. When T is an infinite-dimensional operator, g in Equation (2.5)

is the solution to an ill-posed problem.

3 Well-Posed Problems and Parametric IV

Parametric methods for solving the endogeneity problem in econometric models begin by specifying

the functional form of g(·) in (1.1). If g(·) were known to a finite-dimensional parameter β, then

we could re-write the equation as:

Y = g(X,β) + ε; E(ε|X) 6= 0, (3.1)

so that some of the K variables in X may be correlated with ε. Y is scalar valued and the parameter

of interest, β, is a Kx1 vector of coefficients. There are L variables, denoted by Z, that have two

properties (Greene 2012):

1. uncorrelated with the disturbances, i.e. E(ε|Z) = 0; and

2. they are correlated with the independent variables X.

If g(·) is specified to be linear, then:

Y = Xβ + ε. (3.2)

In this case, ordinary least squares estimates will be biased and inconsistent. Taking the expectation

conditional on Z in Equation (3.2) we get:

E(Y |Z) = E(X|Z)β. (3.3)

Define now, the linear operator T : X → E(X|Z). T is a conditional expectations operator,

which projects X onto the space of the instrument Z. Setting r = E(Y |Z), equation (3.3) could

then be written as:

(TX)β = r, (3.4)

because T is a linear operator.
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Let T ∗ : Z → E(Z|X) denote the adjoint operator, which projects an object on the space of X.

Multiplying both sides of (3.4) by the adjoint operator and solving for β:

(T ∗T )β = T ∗r

β = (T ∗T )−1T ∗r. (3.5)

β is identified if T ∗T is finite and nonsingular. While viewing this problem in operator notation is

unconventional, it will help to have this foundation when approaching nonparametric IV methods.

Assuming a linear relationship between X and Z, i.e. X = Zγ + η, β can be estimated by:

β̂ = (T̂ ∗T̂ )−1T̂ ∗r

= ([Z(Z ′Z)−1Z ′X]′Z(Z ′Z)−1Z ′X)−1[Z(Z ′Z)−1Z ′X]′Y

= (X ′PZX)−1X ′PZY, (3.6)

where PZ = Z(Z ′Z)−1Z ′ is the projection matrix (Centorrino et al. 2014). The condition for

identification is that RANK(Z) = L ≥ RANK(X) = K. When L = K, β is said to be just

identified. Assuming that the disturbance ε is homoskedastic, β can be estimated by:

β̂IV = (Z ′X)−1Z ′Y. (3.7)

If, however, L > K then the parameter is over-identified and two-staged least squares can be

implemented:

β̂2SLS = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′Y

= (X̂ ′X̂)−1X̂ ′Y,

(3.8)

where X̂ = Z(Z ′Z)−1Z ′X 5. Equation (3.8) is a special case of the Generalized Method of Moments

(GMM) estimator (Baum, Schaffer & Stillman 2003). The L instruments give us a set of L moment

5PZ = Z(Z′Z)−1Z′ is idempotent, i.e. PZPZ = PZ .
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conditions:

gi(β) = Z ′i(Yi −Xiβ). (3.9)

The orthogonality conditions are satisfied at the true value of β, i.e. E(gi(β)) = 0. We estimate

the parameter using the L sample moments:

ḡ(β̂) =
1

n

n∑
i=1

gi(β̂). (3.10)

The GMM estimate of β is:

β̂GMM = (X ′ZWNZ
′X)−1X ′ZWNZ

′Y, (3.11)

where WN is an L × L full rank symmetric weighting matrix, which must be estimated in order

to derive β̂GMM (see Cameron and Trivedi (2007), Section 6.4). When errors are homoskedastic,

(3.11) reduces to (3.8) (Baum et al. 2003).

The GMM method can be extended in the case that g(X,β) in Equation (3.1) is defined as

nonlinear. The population moment conditions and sample moments are defined as:

E(g(X,β)) = 0

and

1

n
Z ′ε = 0,

respectively. These GMM estimators are n−1/2 consistent and asymptotically normal.

Equation (3.5) is an example of a well-posed problem. As Horowitz (2013) explains, Equa-

tion (3.5) uniquely determines β if the inverse matrices on the right-hand side are non-singular.

Therefore, we can use (3.5) to identify β in (3.2). Furthermore, β is a continuous function of the

population moments and the probability distributions of the random variables on the right-hand

side of Equation (3.5). Following the above definition, we can consistently estimate β by replacing

the unknown population moments with their sample moments, as is done in Equation (3.7) and
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Equation (3.8) for the cases where L = K and L > K, respectively.

4 Nonparametric Instrumental variables

The general framework in the nonparametric IV literature begins by defining S = (Y,X,Z) ∈

R × RK × RL. S is characterized by a cumulative density function F (S) with respect to the

Lebesgue measure, and has probability distribution f(S).

Definition 4.1 (Lebesgue measure). A Lebesgue measure m is a measure defined on the real

line R with the property that for any interval [a, b] (b ≥ a), m([a, b]) = b− a. That is the Lebesgue

measure of an interval equals the length of the interval. Any single point has a Lebesgue measure

of zero (Li & Racine 2007).

As in the literature, the space considered is the Hilbert space of square integrable functions L2

of S, given by:

L2 =

{
h :

∫
h(s)2dx <∞

}
Let ||·|| and 〈·,·〉 denote the norm and inner product in L2, respectively:

||h|| =
[∫

h(s)2ds

]1/2

〈g, h〉 =

∫
g(s)h(s)ds

Consider again the model in Equation (1.1), only now g satisfies regularity conditions but is

otherwise unknown. The first step in estimating g(·) is to derive a mapping from S to g that

identifies g. Taking the expectation of Equation (1.1) conditional on Z we get:

E(Y |Z) = E(g(X)|Z) (4.1)

E(Y |Z) =

∫
g(x)fX|Z(x, z)dx

E(Y |Z) =

∫
g(x)

fXZ(x, z)

fZ(z)
dx, (4.2)
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where fX|Z(x, z), fXZ(x, z), and fZ(z) denote the density of X conditional on Z, the joint density

of (X,Z), and density of Z, respectively. Note the similarity between equations (4.2) and (2.1); the

solution to a nonparametric instrumental variable problem is the solution to a Fredholm equation

of the first kind.

Denote L2
i as the set of square integrable function equations on variable i only, i = Y,X,Z.

Define T as an operator as the conditional expectations operator on L2 such that:

T : L2
X → L2

Z ,

T [g(x)](z) = E(g(X)|Z) =

∫
g(x)fX|Z(x, z)dx.

The adjoint operator of T , denoted by T ∗ is a mapping such that:

T ∗[h(z)](x) = E(h(Z)|X) =

∫
h(z)fZ|X(z, x)dz

h ∈ L2
Z . Defining E(Y |Z) = r(z) we can write Equation (4.2) as:

r = Tg. (4.3)

If T was finite dimensional and T ∗T was non-singular, then we could get a solution for g as:

g = (T ∗T )−1T ∗r. (4.4)

However, we are not restricting g other than following basic regularity conditions; g may be infinite-

dimensional. The conditional expectation r is finite dimensional and can be estimated from the

data. Therefore, T ∗ and T ∗T are potentially infinite dimensional. Let {λj : j = 1, 2, ...} denote

the eigenvalues for T ∗T . As j →∞, λj → 0, rendering T ∗T singular (Horowitz 2013). This means

the inverse mapping from r to g is discontinuous. This is not an issue if T and T ∗ were finite

dimensional, because the eigenvalues of a non-singular finite dimensional matrix are bounded away

from zero (See Section 2.3).
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Therefore, the problem of estimating g in Equation (4.3) is an ill-posed inverse problem. One

can construct a stable approximate solution by using regularization methods. Regularizaton is

the method by which we find an approximation of the unbounded inverse operator T−1 : Tg → g

by a bounded linear operator (Kress 1999). The identification process of g in a nonparametric

instrumental variable framework can be generalized to two steps, estimation of conditional mean

functions and regularization.

4.1 Estimating conditional means

There are two central methods for estimating conditional mean functions in nonparametric regres-

sion analysis: kernel based methods and series methods. Both methods require the selection of a

smoothing parameter which can be either plug-in values or derived from data-driven techniques

(Li & Racine 2007). Here, I focus only on kernel based methods as (to the best of my knowledge)

there is no fully developed probability weighted series method for estimating conditional means to

account for sample design.

In order to use kernels to estimate r and T , we must first estimate the probability density

functions fXZ , fX , and fZ . Partition the predictor variables X into two types, continuous and

discrete, i.e. X = (Xc, Xd), where the superscripts c and d denote continuous and discrete variables,

respectively. I use Xc
is to denote the sth component of Xc

i and Xd
is for the sth component of Xd

i

and assume that Xd
j takes ct ≥ 2 different values in Dt = {0, 1, ..., ct − 1}, t = 1, ..., r. To define

a univariate kernel function for a discrete variable, one may use a variation of the Aitchison and

Aiken (1976) kernel described in Li and Racine (2007, p.131):

l(xdis, x
d
js, λ

d
s) = (λd)

1−1(xdis=xdjs)
s , (4.5)

which takes a value of 1 if xdis = xdjs and λds otherwise, where λds is the smoothing parameter for

xds . The smoothing parameter λds satisfies 0 ≤ λds ≤ 1, with λds = 0 corresponding to an indicator

function and λds = 1 giving equal weights to all values of its arguments. The product kernel for
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discrete variables Xd is

L(xdi , x
d
j , λ

d) =
r∏
s=1

l(xdis, x
d
js, λ

d
s). (4.6)

For continuous variables, let k(·) denote a symmetric, univariate kernel weight function. The

product kernel for continuous variables Xc is defined as:

W (xcis, x
c
js) =

K∏
s=1

1

hx,s
k

(
xcis − xcjs
hx,s

)
, (4.7)

where hx,s is the bandwidth for variable Xs, s = 1, ...,K. Similarly, the product kernel for the

instrumental variables Z is given by: W (zcis, z
c
js) =

∏L
s=1 h

−1
z,sk((zcis − zcjs)/hz,s), where hz,s is the

bandwidth for variable Zs, s = 1, ..., L. A mixed-data product kernel for predictor variables X is

given by: Kγ,ix = W (xcis, x
c
js)L(xdi , x

d
j , λ

d).

Denote f̃XZ , f̃X , and f̃Z as the kernel density estimators for fXZ , fX , and fZ , repectively, then:

f̃XZ =
1

n

n∑
i=1

Kγ,ixW (zcis, z
c
js), (4.8)

f̃X =
1

n

n∑
i=1

Kγ,ix, (4.9)

f̃Z =
1

n

n∑
i=1

W (zcis, z
c
js). (4.10)

Then, the estimators of T , T ∗6, and r are given:

T̃ [g(X)](z) =

∫
g(x)

f̃XZ(x, z)

f̃Z(z)
dx, (4.11)

T̃ ∗[h(Z)](x) =

∫
h(z)

f̃XZ(x, z)

f̃X(x)
dz, (4.12)

r̃(z) =

∑n
i=1 yiW (zcis, z

c
js)∑n

i=1W (zcis, z
c
js)

. (4.13)

6Carrassco et al. (2007) showed that an operator between these two Hilbert spaces has the property that the
adjoint of the estimated operator is equivalent to the estimated adjoint operator.
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4.2 Complex Surveys

Consider now a finite population U = {1, ..., N} of N units. For each j ∈ U the outcome variable

Yj ∈ R and auxiliary variables Xj = (Xd
j , X

c
j ) = (Xd

j1, ..., X
d
jr, X

c
j1, ..., X

c
jq) ∈ RK are observed.

Xj is a (q + r) × 1 vector where the superscripts d and c denote that the variable is discrete

and continuous, respectively. To make inferences on the population, a probability sample S of

size nS is drawn based on a complex sampling plan with each j ∈ U having probability πj of

being selected in the sample. In order to account for the sampling design in the nonparametric IV

estimation, I propose replacing the population totals from equations (4.8), (4.9), and (4.10), with

their probability-weighted estimators:

f̂XZ =
1

n

n∑
i=1

π−1i Kγ,ixW (zcis, z
c
js), (4.14)

f̂X =
1

n

n∑
i=1

π−1i Kγ,ix, (4.15)

f̂Z =
1

n

n∑
i=1

π−1i W (zcis, z
c
js). (4.16)

giving model-assisted estimators for r, T , and T ∗:

r̂(z) =

∑n
i=1 π

−1
i yiW (zcis, z

c
js)∑n

i=1 π
−1
i W (zcis, z

c
js)

, (4.17)

T̂ [g(X)](z) =

∑n
i=1 π

−1
i r̂(zi)W (xcis, x

c
js)∑n

i=1 π
−1
i W (xcis, x

c
js)

, (4.18)

T̂ ∗[h(Z)](x) =

∑n
i=1 π

−1
i Ê(r̂(z)|x)iW (zcis, z

c
js)∑n

i=1 π
−1
i W (zcis, z

c
js)

. (4.19)

If the sample was taken using simple random sampling (SRS), it is fair to assume the data is

independently and identically distributed (i.i.d.) and fXZ , fX , and fZ can be estimated using (4.8),

(4.9), and (4.10), respectively. If the sample was selected such that the probability of inclusion was

not equal across all units, then the sampling design should be taken into account.
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4.2.1 Cross-validation

An important aspect of kernel estimation methods is the selection of the smoothing parameters

γ = (h, λd). It is generally preferred that one uses a data-driven method for selecting the bandwidths

for sound analysis. Furthermore, there are no rule-of-thumb selection methods for the bandwidths

of discrete variables, λd. When estimating conditional mean functions using survey data, Clair

(2019) and Breidt and Opsomer (2005) suggest using least squares cross-validation. For example,

in estimating the conditional mean function r(z) = E(Y |Z) using (4.17), one would choose hz that

minimizes the following cross-validation objective function:

CV (hz) =
∑
i∈S

(yi − r̂−i(zi))2M(zi), (4.20)

where r−i(zi) =
∑

j∈S,j 6=i π
−1
j yjWz,ij/(

∑
j∈S,j 6=i π

−1
j Wz,ij) is the leave-one-out kernel estimator of

r(zi) and Wz,ij = Πq
j 6=ih

−1
z,sk((zcis − zcjs)/hz,s). 0 < M(zi) < 1 is a weight function which serves to

avoid difficulties caused by dividing by zero.

4.3 Landweber-Fridman Regularization

Regularization is the process of converting a discontinuous mapping into a continuous one. Landweber-

Fridman (LF) regularization seeks to restore a continuous inverse mapping by using an iterative

scheme for finding a fixed-point solution for g(X). Therefore, LF regularization solves the ill-posed

problem without the need to invert the T̂ ∗T̂ matrix.

To implement LF regularization, first define a constant c where 0 < c < 1/||T ||2. Because T is

a compact linear operator, there exists an operator

Aα = c
α∑
k=0

(I − cT̂ ∗T̂ )kT̂ ∗

where ĝα = Aαr̂ (See Kress (1999) Theorem 15.27). The approximation ĝα = Aαr̂ corresponds to
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α steps of the iteration scheme:

ĝm = ĝm−1 + cT̂ ∗(r̂ − T̂ ĝm−1)

= ĝm−1 + cÊ[Ê[Y − ĝm−1|Z]|X], (4.21)

m = 1, ..., α. α is the regularization parameter; it determines the number of iterations of the LF

regularization procedure. The role of c is to ensure the convergence of the iterative solution. In

nonparametric IV estimation, T is defined as the conditional expectations operator and therefore,

||T || = 1. As long as c < 1, the solution will converge (Centorrino et al. 2014). In order to solve for

g, the conditional expectations in Equation (4.21) are estimated nonparametrically. The algorithm

is as follows:

1. The process requires a starting value for g(X); Centorinno et al. (2014) suggest ĝ0(X) =

cT̂ r̂ = cÊ(Ê(Y |Z)|X).

2. Next, given ĝ0, we can compute Ê(Y − ĝ0(X)|Z).

3. Next, compute Ê(Ê(Y − ĝ0(X)|Z)|X).

4. From 4.21, compute ĝ1(X) as:

ĝ1 = ĝ0 + cÊ[Ê[Y − ĝ0|Z]|X].

5. For m = 2, 3, ... repeat steps 2 to 4, until a stopping rule stabilizes from iteration to iteration.

As a stopping rule, Florens and Racine (2012) propose iterating until the following objective

function is minimized:

SSR(m) = m
n∑

m=1

[Ê(Y |Z)− Ê(ĝm(X)|Z)]2, m = 1, 2, ...
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5 Monte Carlo Simulations

Simulations that compare nonparametric IV methods to parametric IV methods for different func-

tional forms of the DGP have been conducted in Centorrino et al. (2015). In this section, I compare

the finite-sample properties of the weighted nonparametric IV estimator to the model based non-

parametric IV estimator and other nonparametric estimators that do not correct for an endogenous

regressor. I base my simulations on those by Centorrino et al. (2015) and fix the joint distribution

of the endogenous variable and the instrument and I perform sensitivity analysis on the level of

noise in the model. The population is set to N = 10, 000 and the main data generating process is

given by:

Y = 0.5X2
1 +X2 + ε,

where E(ε|X1) 6= 0. Endogeneity is modelled by first independently simulating the instrument Z,

the exogenous predictor X2, and two disturbances η and u. Then, I define the error ε as a function

of η and u:

Z ∼ N(0, 1) (5.1)

X2 ∼ U(0, 1) (5.2)

η ∼ N(0, 0.27) (5.3)

u ∼ N(0, σ) (5.4)

ε = −0.5η + u (5.5)

X1 is then given by a function of the instrument Z and η:

X1 = 0.2Z + η.

A sample of size n is drawn based on one of three sample plans: SRS, stratification of the Y variable,

and stratification of the X2 variable. Stratifying based on Y induces endogenous stratification into

the model and stratifying based on X2 induces exogenous stratification. In both stratification
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schemes, the sample criterion is divided into three separate strata. From each strata, a sample of

size n/3 is taken. Because the strata sizes differ, there are unequal inclusion probabilities across

units in the population (See Table 1).

I estimate g(X) = 0.5X2
1 +X2 using four estimators: a probability weighted nonparametric IV

(WNPIV) estimator, a nonparametric IV (NPIV) estimator, the modified local constant estimator

(WLC) proposed by Sánchez-Borrego et al. (2014)

WLC =

∑n
i=1 π

−1
i yiKγ,xi∑n

i=1 π
−1
i Kγ,xi

, (5.6)

and the local constant (LC) estimator proposed by Nadaraya (1964) and Watson (1964)

LC =

∑n
i=1 yiKγ,xi∑n
i=1Kγ,xi

. (5.7)

For WNPIV estimation, I use the weighted local estimator to estimate the conditional mean func-

tions as in equations (4.17) to (4.19) and I use the least squared cross-validation method from Clair

(2019) described in Section 4.2.1 to select the smoothing parameters for each regression. For the

NPIV estimation, I use the traditional local constant estimator to estimate the conditional mean

functions as in (4.11) to (4.13). The bandwidths are selected using the least squares cross-validation

method for mixed-data types described in Li and Racine (2004) and (2007). For both instrumental

variable estimators, I use the Landweber-Fridman approach to derive the regularized solution and

set the maximum number of iterations to 1000. I then compute the mean squared error (MSE) for

each estimator. I run 1000 Monte Carlo replications varying the sample size n = 300, 600, 900 and

varying the level of noise, σ=0.05,0.10,0.25, in Equation (5.4).

Table 2 presents the results from SRS. The values in each cell are the median MSE values and

the values in the round brackets are the median absolute deviations (MAD) of the MSE where

MAD[MSE(ĝ(X))] = Median
[∣∣MSE(ĝ(X))−Median[MSE(ĝ(X))]

∣∣],
where ĝ(X) is one of WNPIV, NPIV, WLC, or, LC. As is expected, the median values for the WN-
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PIV estimator are equal to those of the NPIV estimator. Under SRS, the weighted nonparametric

local constant estimator from Sánchez-Borrego et al. (2014) reduces to the traditional local constant

proposed by Nadaraya (1964) and Watson (1964). Also, note that the median MSEs for the for the

instrumental variable estimators are lower than the MSEs for the local constant estimators which

do not correct for the endogeneity caused by X1. Keeping σ constant, as n increases, the median

MSEs for both IV estimators decrease, providing evidence that WNPIV and NPIV are consistent

estimators. The values for WLC and LC, however, are increasing or remaining unchanged. Looking

at the 95 percent confidence intervals of the MSEs in Table 3, as n increases (keeping σ constant)

the lower and upper bounds of the MSEs for the IV estimators decrease and the confidence intervals

do not intersect. The lower and upper bounds for the WLC and LC estimators are equal for all

values of n, keeping σ constant, providing further evidence these estimators are inconsistent with

an endogenous predictor variable.

Table 4 presents the results from stratification on the Y variable. When the sampling scheme is

such that there are unequal probabilities of being selected in the sample and sampling is endogenous,

improvements in efficiency can be made by using a probability weighted estimator. For each

combination of n and σ, the median mean squared errors are lowest for the probability weighted IV

estimator. The 95 percent confidence intervals for WNPIV in Table 5 have upper bounds smaller

than the lower bounds of the MSEs for NPIV for all combinations of n and σ. Results in Table 4 also

suggest that the endogeneity imposed by an endogenous regressor is more severe than endogeneity

imposed by endogenous sampling. The median values for the MSEs of NPIV, which corrects for

the endogenous regressor X1, are smaller than the median values of MSEs for WLC, which corrects

for endogeneity caused by a correlation between the sampling criterion and the error term. Again,

keeping σ constant, as n increases the median MSEs for WLC and LC remain unchanged in Table

4 with intersecting confidence intervals in Table 5.

Finally, Table 6 displays the results from stratification on the exogenous variable X2. Because

X2 is included on the right hand side, sample design is controlled for and the results from the

WNPIV estimator are equal to those of the unweighted NPIV estimator. Similarly, the median

values for the WLC and LC estimators are equal for all values of n and σ. These results coincide with
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Clair (2019). Overall, these simulations show that ordinary nonparametric regression estimators

are inconsistent in the presence of an endogenous regressor and that weighting each observation by

the inverse of the unit’s probability of inclusion does not reduce efficiency and may produce a great

benefit if sampling is endogenous. As shown in Centorrino et al. (2015), if one chooses a linear

parametric specification to estimate a quadratic or more complex function, the estimated coefficients

will be biased and inconsistent. Therefore, nonparametric instrumental variable methods provide

an alternative to parametric methods with a functional form specification advantage.

6 Application

The application considered here is based on the work of Mulvale and Hurley (2008) who looked at

the effect of supplemental insurance on the use of psychologists using data from the 2002 Canadian

Community Health Survey. The authors used a two part model: first, looking at the effect of

supplemental insurance on the probability of using a psychologist and second, conditional on having

seen a psychologist, what was the effect of supplemental insurance on the number of visits to a

psychologist. In Canada, visits to a psychologist are not covered by the national health insurance

plan and are paid out-of-pocket. In addition, visits to a psychologist can be expensive; in Ontario,

the cost to see a psychologist is $225 per hour. This creates an incentive to hold supplemental health

insurance to help cover some or all of the costs of accessing non-physician services. This raises the

concern that insurance status may be endogenous as those who spend more time with psychologist

are more likely to have supplemental insurance to help cover the costs. In order to control for the

endogeneity of insurance status in predicting the use of psychologists, the authors estimated the

model by instrumental variable regression using the marginal tax rate as the instrument. Using

the marginal tax rate as an instrument for supplemental health insurance was first introduced by

Stabile (2001) who looked at the demand for supplemental health insurance and the use of physician

and hospital services.

The data used for this application is from the 2012 Canadian Community Health Survey - Mental

Health component (CCHS-MH). The purpose of this survey was to investigate mental health in
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Canada including the prevalence of mental illness, utilization of mental health care services, life

experiences with mental illness. The population of interest was Canadians over the age of 15

years excluding those on native reserve, military personnel, and those in institutions. To collect

the sample, the CCHS-MH used a multi-stages sampling design by first dividing the country into

strata based on provinces and then selecting a random sample of clusters within each strata. From

the chosen clusters a random sample of households were selected where only one member of each

household was asked to respond. The weights in this survey not only represent the sampling scheme

but were also calibrated for nonresponse.

The survey contains both information on supplemental insurance status and use of psychologist

for mental health reasons. While this survey asked whether or not a person visited a psychologist,

the question on the intensity of use was “how many hours did you spend with a psychologist?”

This differs from the 2002 version of the questionnaire used in Hurley and Mulvale (2008), which

asked about the number of visits with a psychologist. The CCHS-MH also contained information

on income, therefore, I can compute the marginal tax rates. In this application, I will estimate the

effect of supplemental insurance on the number of hours spent with a psychologist, conditional on

having visited a psychologist. As I am only considering those who have visited a psychologist, the

sample size is 541. I will also include two exogenous predictor variables, age and social provision

score. The social provision score is a measure of one’s social support system ranging from 10 to

40, where a value of 10 means they have little to no social support and a value of 40 means the

person has a strong social support system. I will estimate the model using two estimators: the

probability-weighted IV estimator (WNPIV) and the nonparametric IV estimator (NPIV). The

marginal tax rates are computed from Tax Facts and Figures 2011 from Pricewaterhouse Coopers

Canada.

To start the analysis, I conduct a Durbin-Wu-Hausman test to see if insurance status is en-

dogenous. This test has two stages. In the first stage, I run a probit with insurance status as

the outcome variable and the marginal tax rate, age, and social provision score as the predictor

variables. Next I regress hours spent with a psychologist against insurance status, age, social pro-

vision score, and the residual from the first stage. The null hypothesis is that the coefficient on the
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residual from the fist stage is zero and insurance status is exogenous. If I reject the null, it means

that insurance status is endogenous. With a p-value = 0.0075 on the error term, I reject the null

at the 0.05 significance level and conclude that insurance status is endogenous.

To assess the strength of the marginal tax rate as an instrument for insurance status, I run a

nonparametric conditional density estimation with insurance status as the outcome variable and

the marginal tax rate, age, and social provision score as the predictor variables. Letting X and Y

denote a vector of predictor variables and an outcome variable, respectively, the conditional density

of Y given X is:

f(Y |X) =
f(Y,X)

f(X)
,

where f(Y,X) is the joint density of X and Y and f(X) is the marginal density of X. The nonpara-

metric conditional density estimator replaces f(Y,X) and f(X) by their respective kernel density

estimators. Figure 1 presents the probability that someone has supplemental health insurance ver-

sus the marginal tax rate, keeping age and social provision score constant at their medians. There is

a clear positive relationship between the marginal tax rate and the probability of holding insurance.

Table 7 presents the results from estimating the effect of insurance status on hours spent with a

psychologist. The important measure here is the relative difference in time spent with a psychologist

between those with insurance and those without. Both models report that people with insurance

spent more time with a psychologist than those without. However, the weighted estimator report

a higher percent difference that the unweighted estimators. The WNPIV estimator reports that

people with insurance spend 65.8 percent more time with psychologists that those without, while

NPIV says they spend 44.3 percent more time.

7 Conclusion

This paper provides a overview of the underlying theory of nonparametric instrumental variables

and presents a guide to implementing these methods when using data collected via complex sampling

plans. Nonparametric instrumental variable estimation reduces the likelihood of specification errors

and provides an alternative to restrictive parametric methods. Simulations showed that using a

30



probability weighted estimator to estimate conditional mean functions did not decrease efficiency

under SRS or exogenous sampling. However, efficiency gains can be made by using a weighted

estimator when sampling is endogenous.
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Figure 1: Estimated Probability that Someone holds Supplemental Insurance Conditional on their
Marginal Tax Rate

A Figures

B Tables

Table 1: Strata Borders for Endogenous and Exogenous Sampling Schemes

Sample Criterion Strata Border Inclusion Probability Sample Weight

Y Y ≤ %50 quantile 0.0002 5000

%50 quantile < Y ≤ %85 quantile 0.00029 3448.3

Y > %85 quantile 0.0004 2500

X X ≤ %40 quantile 0.00025 4000

%40 quantile < X ≤ %75 quantile 0.00029 3448.3

X > %75 quantile 0.0007 1428.6
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Table 2: Median, Mean, MAD, and 95 Percent Confidence Interval of the Mean Squared Error of
Weighted and Unweighted Nonparametric IV Estimators under Simple Random Sampling

n σ MSE[WNPIV ] MSE[NPIV ] MSE[WLC] MSE[LC]

300 0.05 0.0029 0.0029 0.0111 0.0112
(0.0014) (0.0012) (0.0010) (0.0011)

300 0.10 0.0034 0.0034 0.0111 0.0109
(0.0014) (0.0015) (0.0013) (0.0013)

300 0.25 0.0053 0.0053 0.0108 0.0109
(0.0015) (0.0014) (0.0022) (0.0023)

600 0.05 0.0017 0.0017 0.0113 0.0113
(0.0008) (0.0008) (0.0007) (0.0007)

600 0.10 0.0020 0.0021 0.0111 0.0111
(0.0010) (0.0009) (0.0009) (0.0009)

600 0.25 0.0039 0.0039 0.0109 0.0108
(0.0016) (0.0017) (0.0016) (0.0015)

900 0.05 0.0013 0.0013 0.0113 0.0113
(0.0006) (0.0006) (0.0006) (0.0006)

900 0.10 0.0014 0.0015 0.0111 0.0111
(0.0006) (0.0007) (0.0007) (0.0007)

900 0.25 0.0029 0.0029 0.0111 0.0109
(0.0013) (0.0015) (0.0013) (0.0013)

Values in round brackets are the median absolute deviations.

Table 3: 95 Percent Confidence Interval of the Mean Squared Error of WNPIV, NPIV, WNP, and
NP Estimators under Simple Random Sampling

MSE[WNPIV ] MSE[NPIV ] MSE[WLC] MSE[LC]
n σ Lower Upper Lower Upper Lower Upper Lower Upper

300 0.05 0.0031 0.0033 0.0030 0.0033 0.0111 0.0113 0.0112 0.0114
300 0.10 0.0034 0.0037 0.0034 0.0037 0.0111 0.0114 0.0109 0.0112
300 0.25 0.0049 0.0051 0.0050 0.0052 0.0110 0.0115 0.0110 0.0115

600 0.05 0.0019 0.0021 0.0020 0.0022 0.0112 0.0114 0.0113 0.0114
600 0.10 0.0023 0.0025 0.0023 0.0025 0.0111 0.0113 0.0111 0.0113
600 0.25 0.0038 0.0041 0.0038 0.0040 0.0109 0.0114 0.0109 0.0112

900 0.05 0.0014 0.0015 0.0014 0.0016 0.0113 0.0114 0.0112 0.0114
900 0.10 0.0016 0.0018 0.0017 0.0018 0.0111 0.0112 0.0111 0.0113
900 0.25 0.0031 0.0033 0.0031 0.0033 0.0110 0.0112 0.0110 0.0113
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Table 4: Median, Mean, MAD, and 95 Percent Confidence Interval of the Mean Squared Error of
Weighted and Unweighted Nonparametric IV Estimators under Endogenous Sampling

n σ MSE[WNPIV ] MSE[NPIV ] MSE[WLC] MSE[LC]

300 0.05 0.0028 0.0066 0.0147 0.0168
(0.0014) (0.0013) (0.0011) (0.0010)

300 0.10 0.0032 0.0078 0.0146 0.0175
(0.0014) (0.0016) (0.0013) (0.0014)

300 0.25 0.0052 0.0183 0.0144 0.0251
(0.0023) (0.0023) (0.0026) (0.0029)

600 0.05 0.0018 0.0054 0.0150 0.0168
(0.0008) (0.0007) (0.0008) (0.0007)

600 0.10 0.0018 0.0065 0.0146 0.0178
(0.0008) (0.0010) (0.0010) (0.0010)

600 0.25 0.0034 0.0164 0.0140 0.0253
(0.0016) (0.0021) (0.0020) (0.0020)

900 0.05 0.0013 0.0049 0.0150 0.0169
(0.0006) (0.0006) (0.0007) (0.0006)

900 0.10 0.0014 0.0060 0.0147 0.0178
(0.0006) (0.0007) (0.0008) (0.0008)

900 0.25 0.0024 0.0154 0.0141 0.0252
(0.0011) (0.0016) (0.0016) (0.0016)

Values in round brackets are the median absolute deviations.

Table 5: 95 Percent Confidence Interval of the Mean Squared Error of WNPIV, NPIV, WNP, and
NP Estimators under Endogenous Sampling

MSE[WNPIV ] MSE[NPIV ] MSE[WLC] MSE[LC]
n σ Lower Upper Lower Upper Lower Upper Lower Upper

300 0.05 0.0033 0.0036 0.0067 0.0070 0.0147 0.0150 0.0167 0.0169
300 0.10 0.0037 0.0040 0.0080 0.0083 0.0145 0.0148 0.0175 0.0178
300 0.25 0.0053 0.0057 0.0179 0.0184 0.0144 0.0150 0.0249 0.0255

600 0.05 0.0021 0.0023 0.0055 0.0057 0.0149 0.0150 0.0168 0.0169
600 0.10 0.0022 0.0024 0.0066 0.0068 0.0145 0.0148 0.0177 0.0179
600 0.25 0.0038 0.0042 0.0165 0.0169 0.0141 0.0145 0.0252 0.0257

900 0.05 0.0015 0.0016 0.0050 0.0051 0.0150 0.0151 0.0168 0.0170
900 0.10 0.0017 0.0018 0.0061 0.0062 0.0147 0.0148 0.0178 0.0179
900 0.25 0.0028 0.0030 0.0156 0.0159 0.0141 0.0144 0.0253 0.0256
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Table 6: Median, Mean, MAD, and 95 Percent Confidence Interval of the Mean Squared Error of
Weighted and Unweighted Nonparametric IV Estimators under Exogenous Sampling

n σ MSE[WNPIV ] MSE[NPIV ] MSE[WLC] MSE[LC]

300 0.05 0.0888 0.0889 0.0962 0.0929
(0.0044) (0.0039) (0.0026) (0.0026)

300 0.10 0.0889 0.0891 0.0959 0.0932
(0.0040) (0.0041) (0.0029) (0.0025)

300 0.25 0.0898 0.0898 0.0969 0.0933
(0.0037) (0.0037) (0.0032) (0.0029)

600 0.05 0.0887 0.0883 0.0975 0.0945
(0.0030) (0.0032) (0.0018) (0.0017)

600 0.10 0.0885 0.0887 0.0972 0.0946
(0.0034) (0.0031) (0.0019) (0.0017)

600 0.25 0.0898 0.0896 0.0980 0.0946
(0.0029) (0.0028) (0.0023) (0.0021)

900 0.05 0.0885 0.0884 0.0979 0.0950
(0.0027) (0.0028) (0.0016) (0.0013)

900 0.10 0.0881 0.0886 0.0979 0.0951
(0.0029) (0.0025) (0.0016) (0.0014)

900 0.25 0.0892 0.0884 0.0985 0.0952
(0.0027) (0.0026) (0.0019) (0.0017)

Values in round brackets are the median absolute deviations.

Table 7: Estimated Hours Spent with a Psychologist Versus Insurance Status from Weighted and
Unweighted Nonparametric IV Estimation

Model Insurance No Insurance Percent Change

NPIV 11.90 8.25 44.30
WNPIV 15.60 9.41 65.81
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